organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(4-Fluorophenyl)-2-oxoethyl 3-(trifluoromethyl)benzoate

Hoong-Kun Fun,^a* \$ Suhana Arshad,^a B. Garudachari,^b A. M. Isloor^b and Kammasandra N Shivananda^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bMedicinal Chemistry Division, Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India, and ^cSchulich Faculty of Chemistry, Technion Israel Institute of Technology, Haifa 32000, Israel

Correspondence e-mail: hkfun@usm.my

Received 23 September 2011; accepted 26 September 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.057; wR factor = 0.182; data-to-parameter ratio = 21.8.

In the title compound, $C_{16}H_{10}F_4O_3$, the fluoroform group is disordered over two orientations with an occupancy ratio of 0.834 (4):0.166 (4). The dihedral angle between the two aromatic rings is 20.34 (9)°. In the crystal, $C-H \cdots O$ hydrogen bonds link the molecules into layers lying parallel to the bc plane.

Related literature

For background to the chemistry of phenacyl benzoate derivatives, see: Huang et al. (1996); Gandhi et al. (1995); Ruzicka et al. (2002); Litera et al. (2006); Sheehan & Umezaw (1973). For bond-length data, see: Allen et al. (1987). For a related structure, see: Fun et al. (2011).

Experimental

Crystal data

 $C_{16}H_{10}F_4O_3$ $M_r = 326.24$ Monoclinic, $P2_1/c$ a = 14.7694 (19) Å b = 12.1602 (16) Å c = 8.0929 (10) Å $\beta = 95.886 \ (2)^{\circ}$

V = 1445.8 (3) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.14 \text{ mm}^{-1}$ T = 296 K $0.38 \times 0.25 \times 0.07~\text{mm}$

Data collection

```
Bruker SMART APEXII DUO
  CCD diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2009)
  T_{\rm min} = 0.950, \ T_{\rm max} = 0.990
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.057$	221 parameters
$wR(F^2) = 0.182$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
4815 reflections	$\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$

18790 measured reflections

 $R_{\rm int} = 0.028$

4815 independent reflections

2841 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond	geometry	(Å,	°)
,	D,	7	

C_{5} H5 4 O_{2}^{i} 0.02 2.50 2.262 (2) 120	
$C_3 = H_3 A \cdots C_5$ 0.95 2.30 3.205 (2) 159	
C8-H8A···O1 ⁱⁱ 0.97 2.55 3.502 (2) 169	

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2}$; (ii) $x, -y + \frac{1}{2}, z + \frac{1}{2}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and SA thank Universiti Sains Malaysia for the Research University Grants (No. 1001/PFIZIK/811160). SA thanks the Malaysian Government and USM for the Academic Staff Training Scheme (ASTS) award. AMI thanks Professor Sandeep Sanchethi, Director, National Institute of Technology-Karnataka, India for providing research facilities and the Board for Research in Nuclear Sciences, Department of Atomic Energy, Government of India for the Young Scientist award.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6418).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Arshad, S., Garudachari, B., Isloor, A. M. & Satyanarayan, M. N. (2011). Acta Cryst. E67, o1528.
- Gandhi, S. S., Bell, K. L. & Gibson, M. S. (1995). Tetrahedron, 51, 13301-13308
- Huang, W., Pian, J., Chen, B., Pei, W. & Ye, X. (1996). Tetrahedron, 52, 10131-10136.
- Litera, J. K., Loya, A. D. & Klan, P. (2006). J. Org. Chem. 71, 713-723.
- Ruzicka, R., Zabadal, M. & Klan, P. (2002). Synth. Commun. 32, 2581-2590.
- Sheehan, J. C. & Umezaw, K. (1973). J. Org. Chem. 58, 3771-3773.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

supplementary materials

Acta Cryst. (2011). E67, o2836 [doi:10.1107/S160053681103947X]

2-(4-Fluorophenyl)-2-oxoethyl 3-(trifluoromethyl)benzoate

H.-K. Fun, S. Arshad, B. Garudachari, A. M. Isloor and K. N. Shivananda

Comment

In organic chemistry, phenacyl benzoate is a derivative of an acid formed by reaction between acid and phenacyl bromide. They find applications in the field of synthetic chemistry (Huang *et al.*, 1996; Gandhi *et al.*, 1995) such as synthesis of oxazoles, imidazoles and benzoxazepines. They are also useful for photo-removable protecting groups for carboxylic acids in organic synthesis and biochemistry (Ruzicka *et al.*, 2002; Litera *et al.*, 2006; Sheehan & Umezaw, 1973). Keeping this in view, the title compound was synthesized to study its crystal structure.

In the molecular structure (Fig. 1), the fluoro form group is disordered over two orientations with an occupancy ratio of 0.834 (4):0.166 (4). The two phenyl rings (C1–C6 & C10–C15) make a dihedral angle of 20.34 (9)°. Bond lengths (Allen *et al.*, 1987) and angles are within normal range and are comparable to the related structures (Fun *et al.*, 2011).

The crystal packing is shown in Fig. 2. Intermolecular C5—H5A···O3 and C8—H8A···O1 hydrogen bonds (Table 1) linked the molecules into layers parallel to *bc* plane.

Experimental

A mixture of 3-(trifluoromethyl)benzoic acid (1.0 g, 0.0052 mol), potassium carbonate (0.78 g, 0.0057 mol) and 2-bromo-1-(4-fluorophenyl)ethanone (1.12 g, 0.0052 mol) in dimethylformamide (10 ml) was stirred at room temperature for 2 h. On cooling, colourless needle-shaped crystals of 2-(4-fluorophenyl)-2-oxoethyl 3-(trifluoromethyl)benzoate begin to separate out. These were collected by filtration and recrystallized from ethanol to yield colourles blocks. Yield: 1.6 g, 93.5%. *M.p*: 369–370 K.

Refinement

The fluoro form group is disordered over two orientations, with a final refined occupancy ratio of 0.834 (4):0.166 (4). All H atoms were positioned geometrically [C-H = 0.93 or 0.97 Å] and refined using a riding model with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. Both disordered components are shown.

Fig. 2. The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. Only the major disordered components are shown.

2-(4-Fluorophenyl)-2-oxoethyl 3-(trifluoromethyl)benzoate

$C_{16}H_{10}F_4O_3$	F(000) = 664
$M_r = 326.24$	$D_{\rm x} = 1.499 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4165 reflections
a = 14.7694 (19) Å	$\theta = 2.2 - 27.2^{\circ}$
b = 12.1602 (16) Å	$\mu = 0.14 \text{ mm}^{-1}$
c = 8.0929 (10) Å	T = 296 K
$\beta = 95.886 \ (2)^{\circ}$	Block, colourless
$V = 1445.8 (3) \text{ Å}^3$	$0.38\times0.25\times0.07~mm$
<i>Z</i> = 4	

Data collection

Bruker SMART APEXII DUO CCD diffractometer	4815 independent reflections
Radiation source: fine-focus sealed tube	2841 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.028$
ϕ and ω scans	$\theta_{\text{max}} = 31.6^\circ, \ \theta_{\text{min}} = 1.4^\circ$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -21 \rightarrow 21$
$T_{\min} = 0.950, \ T_{\max} = 0.990$	$k = -17 \rightarrow 17$
18790 measured reflections	$l = -11 \rightarrow 11$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.182$	H-atom parameters constrained
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0745P)^2 + 0.3289P]$ where $P = (F_o^2 + 2F_c^2)/3$
4815 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
221 parameters	$\Delta \rho_{max} = 0.34 \text{ e } \text{\AA}^{-3}$

0 restraints

 $\Delta \rho_{\rm min} = -0.35 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
F1	0.41559 (16)	0.37665 (19)	-0.5044 (2)	0.1144 (9)	0.834 (4)
F2	0.44559 (19)	0.25120 (16)	-0.3326 (4)	0.1179 (11)	0.834 (4)
F3	0.53719 (16)	0.3931 (3)	-0.3405 (5)	0.1359 (12)	0.834 (4)
F1X	0.5096 (11)	0.4001 (13)	-0.4146 (18)	0.110 (5)*	0.166 (4)
F2X	0.4251 (10)	0.2913 (17)	-0.413 (2)	0.137 (6)*	0.166 (4)
F3X	0.5187 (7)	0.2898 (8)	-0.2308 (12)	0.096 (3)*	0.166 (4)
F4	-0.27124 (10)	0.35096 (15)	0.5827 (2)	0.1118 (6)	
01	0.18686 (10)	0.27074 (10)	-0.0004 (2)	0.0756 (4)	
O2	0.15270 (8)	0.43444 (10)	0.10304 (15)	0.0578 (3)	
O3	0.02656 (9)	0.56904 (9)	0.18644 (16)	0.0623 (3)	
C1	-0.11779 (12)	0.51838 (14)	0.3751 (2)	0.0522 (4)	
H1A	-0.1071	0.5922	0.3543	0.063*	
C2	-0.18848 (13)	0.48938 (17)	0.4648 (2)	0.0628 (5)	
H2A	-0.2257	0.5427	0.5050	0.075*	
C3	-0.20243 (14)	0.38007 (19)	0.4931 (3)	0.0707 (5)	
C4	-0.14948 (14)	0.29857 (17)	0.4363 (3)	0.0720 (5)	
H4A	-0.1609	0.2250	0.4577	0.086*	
C5	-0.07894 (13)	0.32825 (14)	0.3467 (2)	0.0577 (4)	
H5A	-0.0423	0.2741	0.3071	0.069*	
C6	-0.06199 (11)	0.43833 (12)	0.31499 (18)	0.0447 (3)	
C7	0.01478 (11)	0.47363 (12)	0.22220 (19)	0.0458 (3)	
C8	0.07752 (12)	0.38408 (13)	0.1730 (2)	0.0523 (4)	
H8A	0.0994	0.3408	0.2696	0.063*	
H8B	0.0451	0.3356	0.0921	0.063*	
C9	0.20286 (12)	0.36718 (13)	0.0189 (2)	0.0520 (4)	
C10	0.27900 (11)	0.42548 (13)	-0.0491 (2)	0.0502 (4)	
C11	0.30026 (13)	0.53430 (15)	-0.0112 (3)	0.0658 (5)	
H11A	0.2676	0.5727	0.0624	0.079*	
C12	0.36985 (16)	0.58564 (18)	-0.0826 (3)	0.0818 (7)	
H12A	0.3833	0.6589	-0.0581	0.098*	
C13	0.41962 (15)	0.52905 (18)	-0.1900 (3)	0.0753 (6)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H13A	0.4665	0.5639	-0.2	379	0.090*	
C14	0.39943 (13)	0.42070 (1	16) -0.2	259 (2)	0.0604 (4)	
C15	0.32944 (12)	0.36853 (1	-0.1	566 (2)	0.0550 (4)	
H15A	0.3161	0.2953	-0.1	820	0.066*	
C16	0.45169 (18)	0.3601 (2)	-0.3	439 (4)	0.0866 (7)	
Atomic displac	ement parameters	$(Å^2)$				
	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
F1	0.153 (2)	0.1219 (18)	0.0750 (12)	0.0103 (13)	0.0431 (12)	-0.0150 (11)
F2	0.162 (2)	0.0723 (12)	0.1333 (19)	0.0433 (13)	0.0827 (18)	0.0078 (12)
F3	0.0656 (13)	0.194 (3)	0.156 (3)	-0.0032 (14) 0.0486 (15)	-0.064 (2)
F4	0.0863 (10)	0.1217 (13)	0.1375 (13)	-0.0144 (9)	0.0607 (9)	0.0101 (10)
01	0.0871 (10)	0.0428 (7)	0.1035 (11)	-0.0067 (6)	0.0413 (8)	-0.0073 (7)
02	0.0601 (7)	0.0439 (6)	0.0729 (8)	-0.0040 (5)	0.0234 (6)	-0.0052 (5)
O3	0.0732 (8)	0.0360 (6)	0.0797 (8)	-0.0019 (5)	0.0170 (6)	0.0077 (5)
C1	0.0571 (9)	0.0416 (8)	0.0576 (9)	0.0070 (7)	0.0040 (7)	-0.0007 (7)
C2	0.0567 (10)	0.0668 (12)	0.0655 (10)	0.0109 (9)	0.0099 (8)	-0.0044 (9)
C3	0.0556 (11)	0.0800 (14)	0.0791 (13)	-0.0082 (10) 0.0185 (9)	0.0035 (10)
C4	0.0748 (13)	0.0512 (10)	0.0933 (14)	-0.0120 (9)	0.0253 (11)	0.0056 (10)
C5	0.0640 (10)	0.0377 (8)	0.0735 (11)	-0.0022 (7)	0.0171 (8)	-0.0004 (7)
C6	0.0494 (8)	0.0350 (7)	0.0493 (8)	0.0001 (6)	0.0033 (6)	0.0004 (6)
C7	0.0542 (9)	0.0338 (7)	0.0491 (8)	-0.0008 (6)	0.0042 (6)	0.0008 (6)
C8	0.0580 (9)	0.0404 (8)	0.0606 (9)	-0.0023 (7)	0.0164 (7)	0.0015 (7)
C9	0.0572 (9)	0.0425 (8)	0.0574 (9)	0.0022 (7)	0.0117 (7)	0.0004 (7)
C10	0.0503 (9)	0.0429 (8)	0.0581 (9)	0.0028 (6)	0.0090 (7)	0.0009 (7)
C11	0.0630 (11)	0.0483 (9)	0.0894 (13)	-0.0005 (8)	0.0236 (10)	-0.0124 (9)
C12	0.0803 (14)	0.0515 (11)	0.1196 (18)	-0.0159 (10) 0.0387 (13)	-0.0176 (11)
C13	0.0658 (12)	0.0634 (12)	0.1012 (16)	-0.0088 (10) 0.0307 (11)	-0.0018 (11)
C14	0.0562 (10)	0.0586 (10)	0.0685 (11)	0.0035 (8)	0.0172 (8)	-0.0001 (8)
C15	0.0596 (10)	0.0446 (8)	0.0623 (10)	0.0038 (7)	0.0129 (8)	-0.0012 (7)
C16	0.0847 (16)	0.0780 (16)	0.1050 (19)	-0.0056 (13) 0.0472 (14)	-0.0146 (14)

Geometric parameters (Å, °)

1.368 (4)	C5—C6	1.391 (2)
1.331 (3)	С5—Н5А	0.9300
1.323 (3)	C6—C7	1.486 (2)
1.182 (16)	С7—С8	1.510(2)
1.059 (17)	C8—H8A	0.9700
1.537 (10)	C8—H8B	0.9700
1.355 (2)	C9—C10	1.482 (2)
1.203 (2)	C10-C11	1.387 (2)
1.336 (2)	C10—C15	1.387 (2)
1.4342 (19)	C11—C12	1.379 (3)
1.2126 (18)	C11—H11A	0.9300
1.377 (3)	C12—C13	1.379 (3)
1.395 (2)	C12—H12A	0.9300
0.9300	C13—C14	1.375 (3)
	1.368 (4) 1.331 (3) 1.323 (3) 1.182 (16) 1.059 (17) 1.537 (10) 1.355 (2) 1.203 (2) 1.336 (2) 1.4342 (19) 1.2126 (18) 1.377 (3) 1.395 (2) 0.9300	1.368(4)C5—C6 $1.331(3)$ C5—H5A $1.323(3)$ C6—C7 $1.182(16)$ C7—C8 $1.059(17)$ C8—H8A $1.537(10)$ C8—H8B $1.355(2)$ C9—C10 $1.203(2)$ C10—C11 $1.336(2)$ C10—C15 $1.4342(19)$ C11—C12 $1.2126(18)$ C11—H11A $1.377(3)$ C12—C13 $1.395(2)$ C13—C14

C2—C3	1.368 (3)	C13—H13A	0.9300
C2—H2A	0.9300	C14—C15	1.380 (2)
C3—C4	1.371 (3)	C14—C16	1.484 (3)
C4—C5	1.377 (3)	C15—H15A	0.9300
C4—H4A	0.9300		
C9—O2—C8	115.59 (13)	C12—C11—C10	120.07 (17)
C2—C1—C6	120.80 (16)	C12—C11—H11A	120.0
C2—C1—H1A	119.6	C10-C11-H11A	120.0
C6—C1—H1A	119.6	C13—C12—C11	120.44 (18)
C3—C2—C1	118.20 (17)	C13—C12—H12A	119.8
C3—C2—H2A	120.9	C11—C12—H12A	119.8
C1—C2—H2A	120.9	C14—C13—C12	119.56 (19)
F4-C3-C2	118 5 (2)	C14—C13—H13A	120.2
F4-C3-C4	118 41 (19)	C12—C13—H13A	120.2
C_{2} C_{3} C_{4}	123.04 (18)	C_{13} C_{14} C_{15}	120.2
C_{2}^{-} C_{3}^{-} C_{4}^{-} C_{5}^{-}	118 40 (18)	C_{13} C_{14} C_{16}	120.03(10) 119.73(19)
$C_3 = C_4 = C_3$	120.8	$C_{15} - C_{14} - C_{16}$	119.75 (19)
$C_{5} = C_{4} = H_{4}$	120.8	$C_{13} = C_{14} = C_{10}$	119.39 (19)
C_{3}	120.6	$C_{14} = C_{15} = C_{10}$	119.88 (10)
C4 = C5 = C6	120.00 (17)	C14C15H15A	120.1
С4—С5—Н5А	119.7	CIO-CIS-HISA	120.1
С6—С5—Н5А	119.7	F2X = C16 = F1X	108.5 (12)
C5—C6—C1	118.91 (15)	F2X—C16—F3	123.5 (9)
C5—C6—C7	122.18 (14)	F1X—C16—F2	120.0 (8)
C1—C6—C7	118.90 (14)	F3—C16—F2	111.8 (3)
O3—C7—C6	122.18 (14)	F2X—C16—F1	61.8 (11)
O3—C7—C8	121.35 (14)	F1X-C16-F1	73.2 (7)
C6—C7—C8	116.47 (12)	F3—C16—F1	104.7 (3)
O2—C8—C7	108.49 (12)	F2—C16—F1	100.9 (3)
O2—C8—H8A	110.0	F2X-C16-C14	122.9 (9)
С7—С8—Н8А	110.0	F1X-C16-C14	123.9 (8)
O2—C8—H8B	110.0	F3-C16-C14	113.3 (2)
С7—С8—Н8В	110.0	F2-C16-C14	114.0 (2)
H8A—C8—H8B	108.4	F1	111.1 (2)
01—C9—O2	123.44 (16)	F2X—C16—F3X	93.2 (11)
O1—C9—C10	124.35 (16)	F1X—C16—F3X	93.6 (8)
O2—C9—C10	112.20 (14)	F3—C16—F3X	66.5 (4)
C11—C10—C15	119.39 (16)	F2—C16—F3X	56.6 (4)
C11—C10—C9	122.52 (15)	F1-C16-F3X	144.3 (4)
C15—C10—C9	118.08 (15)	C14—C16—F3X	103.9 (4)
C6—C1—C2—C3	0.0 (3)	C15—C10—C11—C12	1.2 (3)
C1—C2—C3—F4	179.32 (18)	C9—C10—C11—C12	-177.7 (2)
C1 - C2 - C3 - C4	-01(3)	C10-C11-C12-C13	-0.9(4)
F4—C3—C4—C5	-179.30 (19)	C11-C12-C13-C14	0.0 (4)
$C_2 - C_3 - C_4 - C_5$	01(3)	C12-C13-C14-C15	0.6 (3)
C_{3} C_{4} C_{5} C_{6}	0.0(3)	C_{12} C_{13} C_{14} C_{16}	178 9 (2)
C_{4} C_{5} C_{6} C_{1}	-01(3)	C_{13} C_{14} C_{15} C_{10}	-0.3(3)
C_{4} C_{5} C_{6} C_{7}	178 56 (17)	C16-C14-C15-C10	-178.6(2)
$C_{1} = C_{2} = C_{1} = C_{1}$	1,0.50(17)	$C_{10} - C_{14} - C_{15} - C_{10}$	-0.6(2)
$C_2 - C_1 - C_0 - C_3$	0.2 (2)	UII-UIU-UIJ-UI4	0.0 (3)

supplementary materials

C2-C1-C6-C7	-178.58 (15)	C9—C10—C15—C14	178.38 (16)
С5—С6—С7—О3	175.79 (16)	C13-C14-C16-F2X	-154.8 (13)
C1—C6—C7—O3	-5.5 (2)	C15-C14-C16-F2X	23.5 (14)
C5—C6—C7—C8	-3.7 (2)	C13-C14-C16-F1X	-2.1 (9)
C1—C6—C7—C8	174.96 (14)	C15-C14-C16-F1X	176.3 (9)
C9—O2—C8—C7	-165.10 (14)	C13-C14-C16-F3	32.0 (4)
O3—C7—C8—O2	7.2 (2)	C15-C14-C16-F3	-149.7 (3)
C6—C7—C8—O2	-173.24 (13)	C13-C14-C16-F2	161.3 (3)
C8—O2—C9—O1	0.9 (3)	C15-C14-C16-F2	-20.3 (4)
C8—O2—C9—C10	-179.97 (14)	C13-C14-C16-F1	-85.5 (3)
O1—C9—C10—C11	-173.9 (2)	C15-C14-C16-F1	92.9 (3)
O2—C9—C10—C11	7.0 (2)	C13-C14-C16-F3X	102.0 (5)
O1—C9—C10—C15	7.2 (3)	C15-C14-C16-F3X	-79.6 (5)
O2—C9—C10—C15	-171.99 (15)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C5—H5A···O3 ⁱ	0.93	2.50	3.263 (2)	139
C8—H8A…O1 ⁱⁱ	0.97	2.55	3.502 (2)	169
Symmetry codes: (i) $-x$, $y-1/2$, $-z+1/2$; (ii) x , $-y+1/2$, $z+1/2$.				

Fig. 1

